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Abstract

The development of embedded functions to represent the

mean velocity and total enthalpy distributions in the wall layer of a

supersonic turbulent boundary layer is considered. The asymptotic

scaling laws (in the limit of large Reynolds number) for high speed

compressible flows are obtained to facilitate eventual

implementation of the embedded functions in a general prediction

method. A self-consistent asymptotic structure is derived, as well

as a compressible law of the wall in which the velocity and total

enthalpy are logarithmic within the overlap zone, but in the

Howarth-Dorodnitsyn variable. Simple outer region turbulence

models are proposed (some of which are modifications of existing

incompressible models) to reflect the effects of compressibility. As

a test of the methodology and the new turbulence models, a set of

self-similar outer region profiles is obtained for constant pressure

flow; these are then coupled with embedded functions in the wall

layer. The composite profiles thus obtained are compared directly

with experimental data and good agreement is obtained for flows

with Math numbers up to 10.

Nomenclature

Bo,B i Thermal analogs of Co, Ci

Co, C i Outer, inner logarithmic law constants

for velocity

C_ Specific heat at constant pressure

Cp Constant in Baldwin-Lomax model

F u/Ue
F 1 Outer scaled stream function deficit

H Total enthalpy

I H/He

k Thermal conductivity

K,K h Eddy viscosity and conductivity

constants (0.0168, 0.0245)

Me Mach number at the edge of boundary

layer

n Normal coordinate

p Pressure

Pr Prandtl number

q Total heat flux

q. Normalized heat flux at the wall (Equation

(4.12))

r Radius of revolution of axisymmetric body

Re Reference Reynolds number

• Graduate Research Assistant

• . Professor

• ** Professor, Member AIAA

t Work supported by NASA Langley Research Center under

grant NAG-I-832

Copyright © 1990 by J. D. A. Walker
Published by the American InstitUte of Aeronautics and

Astronautics with permission.

Re6.

s

S

T

n

Ue

Ur

U°

U ÷

V

V

Y

y÷

7

7o
6"

Ao,A_

e,_,6H,e H

0,0 +

_¢, /¢0

P

P
0"

1"

¢

Subscript e

Subscript w

Superscript •

Reynolds number based on displacement

thickness (Equation (7.1))
Streamwise coordinate

Constant in Sutherland formula

Temperature

Streamwise velocity

Streamwise velocity at the mainstream

Friction velocity

udUe
Wall-layer scaled streamwise velocity

Normal velocity

Outer normal velocity (transformed)

Howarth-Dorodnitsyn variable

Y/Ai, scaled inner normal variable

Parameter defined by Equation (2.24)

Ratio of specific heats

Euler's constant (= 0.577215....)

Incompressible displacement thickness

Outer, inner length scales

Eddy viscosities and eddy conductivities

(Equations (5.8), (5.13))

rY/Ao

Outer, inner total enthalpy defect
yon Karman constant and its thermal

analog

Absolute viscosity

Streamwise Mangler coordinate

Density

Turbulent shear stress

Total shear stress

Turbulent heat flux

Strearnfunction

Boundary-layer edge
Wall

Dimensional quantities

1. Introduction

Computation of high speed compressible turbulent flows

near solid walls ishampered by severalpracticaldifficulties,some of

which are associated with the turbulence models (or lack thereof)

while others are primarily computational in nature (for a given

turbulence model). First consider the turbulence models which are

currently in use for the momentum equation. For simplicity, the

discussion will relate primarily to algebraic turbulence models.

Note, however, that some of the moat criticalissues are associated

with the nature and functional form of the velocity and

temperature profilesin the overlap zone near the wall, where both

profilesexhibit a logarithmic dependence on normal distance from

the wall; consequently, these same aspects are also criticalwhen

higher-order closure schemes are used. Examples of algebraic

models that are currently in common use include the Cebeci-Smith I

model and the Baldwin-Lomax 2 model. The essence of these



modelsis a simple ramp function for eddy viscosity (see also
Mellor and Gibson s) which behaves linearly in distance from

the wall in the near-wall region and then abruptly changes to

a constant (at a fixed streamwise location) whose value

depends on the local flow conditions; so-called "intermittancy"
• 1,2 . .

factors can also be Introduced as an option, In order to

reduce the eddy viscosity to zero far from the wall. The eddy

viscosity formula is typically modified 1'2 to a mixing length

formulation in the wall-layer region (between the wall and the

overlap zone); the mixing length is linear in the overlap zone,

but is reduced toward the wall through multiplication by a

Van Driest damping factor I. Because of the rapid variation of

the damping factor and of the velocity profile, relatively large

numbers of mesh points are required in the wall layer to

ensure reasonable accuracy in any computational algorithm

which seeks to compute the velocity profile all the way to the

wall.

It is well known that algebraic turbulence models

produce good predictions for attached turbulent flows1'4 at

low to moderate subsonic speeds, where a wealth of reliable

experimental data is available to validate the computed

results. It has been common practice to then extrapolate the

use of such models I, almost without modification, to the
• . 1,5-7

calculatlon of supersonm turbulent boundary layers . In

the absence of turbulence models which adequately reflect the

influence of compressibility, this approach gives plausible

predictions for the present, but for the longer term needs to

be critically assessed. The use of conventional algebraic

models in the supersonic regime (that have been tuned for low

speed turbulent boundary-layer flows) implicitly assumes that

the "law of the wall" for compressible flow takes a similar

form to the incompressible version (see, for example,

References 8 and 9). However, the "law of the wall" for

compressible flow has been controversial I'4, and at present the

precise functional form cannot be considered well established.

There have been a number of attemvts in the past to develop

a compressible law of the wall 4'I°'n, including the effective

velocity approach of Van Driest I_ which is described in

References I and 4. The latter form is developed from a

mixing length turbulence model and ultimately yields an

incompressible form of the law of the wall but in terms of an

"effective velocity"; the latter quantity must be obtained from

the actual velocity through a transformation involving an

inverse sine function. Maise and McDonald I'Ia found that the

effective velocity approach gave good comparisons with

measured velocity data in a compressible adiabatic boundary

layer, but the agreement was much less impressive in flows

with heat transfer. Consequently, the Van Driest method 12

can be viewed as an interesting representation of velocity in

the overlap zone, which can be used with confidence only over

a limited range of conditions• It is therefore apparent that

there is no clear consensus on the form of the logarithmic law

in compressible flow (at least to the level of confidence which

is associated with the incompressible "law of the wall"). In

the present study, a compressible law of the wall is described

in which the mean velocity is logarithmic, but in the Howarth-

Dorodnitsyn variable 14 (rather than the physical normal

distance from the wall).

While the situation regardlng the velocity profile is

somewhat murky, matters are far worse relative to the

temperature distribution, where established theoretical results

are scarce. For low speed subsonic flows, the static

temperature distribution clearly displays a logarithmic

behavior in the overlap zone, and this is readily confirmed by

a wide variety of experimental data 14. However, the value of

the slope of the temperature profile in the overlap zone is not

universally agreed upon; indeed, unlike the velocity profile, the

slope of the temperature profile appears to vary with pressure
• . 14,15

gradient and local flow condltxons . In the supersonic

range, the total enthaipy plays a similar role to the static

temperature at low speeds; however, direct measurements of

temperature across the entire boundary layer, and in

particular in the overlap zone, are very rare. Consequently, it

is difficult to confirm whether a logarithmic region exists for

the total enthalpy profile and under what conditions, or to

determine the slope with any degree of certainty from existing

data. At low speeds, the turbulent heat flux terms in the

energy equation are usually modeled by assuming that the

eddy conductivity can be related to the eddy viscosity through

a turbulent Prandtl number; however, this concept proves to

be successful only when semi-empirical relations are

introduced so that the turbulent Prandtl number varies with

distance across the boundary layer. This, of course, is

unsatisfactory and brings into question whether the notion of

a turbulent Prandtl number is useful in modeling heat transfer

in a boundary layer. For high speed comvressible flow, similar
1,4

modeling concepts are often emplo_edls , as well as various
versions of the Crocco relations ' . In some cases,

temperature distributions (in the tabulated data) have been

computed from empirical variations of the Crocco integral. In
the present study, an objective was to treat the thermal

problem independently from a model motivated by any type
of Reynolds analogy argument or an empirical version of the

Crocco integral. Here a self-consistent structure is presented

for the total enthalpy distribution in the boundary layer

which is logarithmic in the overlap zone; a formula forl the

slope of the total enthalpy is derived, as well as a relationship
from which the total heat transfer at the wall can be

evaluated. The resulting distributions of temperature are

then compared directly with the recent experimental data of

Carvin 17, as well as other existing data setsIs.

A principal motivation of the present study was to

initiate development of embedded-function methods for the

computation of high-speed compressible turbulent flows. In

the calculation of turbulent flows near walls, a large number

of mesh points are required in order to resolve the intense

variations that occur in the wall layer in the velocity and

temperature distributions. Such grids can put a severe strain

on computer resources, even for a two-dimensional flow• For

solution approaches based on the full Navier-Stokes equations,

the relatively small grid sizes near the surface can also give

rise to stability problems in the numerical algorithm. In an

attached two-dimensional turbulent flow, the wall layer

exhibits an essentially univdrsal and similar behavior; thus, to

a large extent, expending a major portion of this computation

on a known (and unexceptional) wall-layer solution seems

wasteful. For three-dimensional flow, the mesh vroblems are

ac t . I_,19even more u e, but recent asymptotic analyses of three-

dimensional turbulent flows are strongly suggestive that a

generic (but more complicated) wall-layer structure exists for

attached boundary layers. In view of the computational

problems just discussed, there has been an increasing interest

in recent times in wall-function methods s in which a

numerical solution is patched at the firstgrid point from the

wail to some form of the "law of the wall"; this procedure

obviates the need for a densely packed mesh near the surface,

and, in principle, is much more efficient. A more refined

procedure has recently been under development by Wahls et

al.20and Barnwell and Wahls21; in this approach, the question

of compressibility is addressed directly and a combination of a

law of the wail and a "law of the wake" is used to represent

the velocity distribution above the overlap zone (in the region

where the eddy viscosity is linear in conventional fully

numerical methods).

Another related approach is the embedded-function

method. Recently, an efficientand accurate algorithm for the

computation of mean velocity and temperature profiles in

subsonic two-dimensional turbulent boundary layers has been

described by Walker, Werle and Ece 22. The basic method is a

semi-analytical embedded-function scheme in which the mean

velocity and temperature profiles are represented by smooth

analytical functions throughout the wall layer; this is in

contrast to previous wall-function methods which simply

attempt to tie onto some form of the logarithmic law at the

first mesh point off the wall. The present profile models are

derived through consideration of the observed coherent



structureand 3dynamical features of the time-dependent wail-
layer flow _ ' • In the computational algorithm 2_, the wall-

layer profiles "are smoothly matched to the outer-region

numerical solutions of the turbulent boundary-layer equations

as the calculation proceeds in the downstream direction.

Results were compared with those obtained using a

conventional approach, in which a solution was computed all

the way to the wall using a large number of clustered grid

points and an inner region mixing length model with a Van

Driest damping factor I. In the embedded-function method 22,

simple outer region turbulence models are used and the

analytic functionals provide the turbulence model for the wall

layer; thus, inner models involving the Van Driest damping

factor are no longer needed. Calculations were carried out for

incompressible and for low-speed subsonic compressible flows;

it was determined that up to a 50_ reduction in the total

mesh points could be achieved, as compared to a conventional

method that computes all the way to the wall, with no

degradation in accuracy. In addition, since turbulence models

and a numerical solution are only required for the outer

region, the algorithm is very efficient _2. At any streamwise

location, skin friction and heat-transfer coefficients are

calculated through a set of algebraic matching conditions,

which are the mathematical statements that the outer region

numerical solutions should join smoothly onto the embedded

wall-layer functions. Direct comparisons 22 with experimental
data for measured heat transfer rates showed excellent

agreement.

The work described in this paper represents a first step

toward extending the embedded-function methodology to the

computation of turbulent supersonic flows. It is worthwhile to

note that this type of approach (or any other wall-function

method which is tied to a logarithmic profile variation) can

only be sensibly applied to an attached turbulent flow. As a

turbulent flow separates, it is well known that the logarithmic

behavior in the velocity profile disappears. Although there is

some evidence that there may be a logarithmic portion of the

profile in the back-flow region beyond the separation point, it

is evidently a far different functional form than in the

upstream boundary layer 24. This is simply an indication that

the physics in the back-flow zone are different from the well-

documented behavior of the attached wall layer. For this

reason, any attempt to force a wail-function approach,

without substantial modification, into a region of separation

would not seem to be well conceived. Although this is an area

requiring additional modeling, it is also important to

appreciate that in most practical flow problems, the turbulent

boundary layer is attached over a large portion of the total

surface.

From a modeling standpoint, the supersonic turbulent

boundary layer is considerably more complex than the

subsonic regime, in view of the substantial density variations

that occur across the boundary layer. In addition, the

asymptotic behavior of the relevant flow quantities is not

firmly established, particularly near the overlap zone and in

the wall layer; unfortunately, data for the velocity profile

within this zone are sparse and often of uncertain reliability.

Finally, an objective of the present research is to model the

thermal problem directly and in a manner which is

independent of the turbulent Prandtl number concept.

Unfortunately, unlike subsonic flows, there is a very small

data base of temperature surveys for supersonic flow with

heat transfer and measurements near the overlap zone are

very rare. A substantial portion of supersonic data has been

taken with an adiabatic wall, and thus is not useful for direct

modeling of the heat transfer problem.

Because the embedded-function approach involves the

smooth joining of an exterior numerical solution to a set of

functionals, which are logarithmic near the surface, the

numerical algorithms involved are not straightforward. A

crucial step in the methodology is the determination of the

correct asymptotic scaling laws for the velocity and total

enthalpy in the overlap zone. This is carried out in the

present paper through the development of asymptotic
expansions, which describe the structure of the solution of the

compressible boundary-layer equations for large Reynolds
number. The analysis is in terms of the Howarth-Dorodnitsyn

variable which implicitly incorporates the influence of mean

density variations across the boundary layer and is believed to

be the appropriate normal variable for compressible turbulent

flow. The asymptotic results reveal a deficiency in the

conventional form of outer-region algebraic models, now in

common use, and a modification to account for density
variations is proposed. The turbulence models used in the

present study for the outer region are simple eddy viscosity

and eddy conductivity models and are similar to the Cebeci-

Smith 1 and Baldwin-Lomax 2 models; they have been selected

here as the simplest possible outer algebraic models in order to

demonstrate the concepts involved. For the wail layer, a set

of embedded functions for velocity and total enthalpy is given,

as well as matching conditions in the overlap zone from which

skin-friction and heat-transfer coefficients can be found. In

order to test the results of the asymptotic theory, as well as

the new turbulence models, a limiting case is considered

corresponding to self-similar profiles that evolve in a constant

pressure flow with heat transfer; in this situation, the

governing equations in the outer region of the boundary layer

reduce to ordinary differential equations, for which exact

analytical solutions are found. The outer-layer profiles were

then matched to the embedded wail-layer functionals to form

a set of composite profiles of velocity and total enthaipy

across the entire boundary layer. These profiles were then

compared directly with experimental data-over a range of a

Mach numbers and the agreement is very encouraging.

The plan of the paper is as follows. In §2, the

governing equations for the compressible turbulent boundary

layer are described in terms of the Howarth-Dorodnitsyn

variable. A general analysis of the leading-order wall layer is

given in §3 while the outer layer is discussed in _4. The

compressible turbulence models for the outer layer are

described in §5. In _6, the special set of profiles for velocity

and total enthalpy in a constant pressure flow are given, and

the detailed comparisons with experimental data are discussed

in _7.

2. Governing Equations

In this section, the basic equations governing a two-

dimensional (or axisymmmetric) nominally steady turbulent

boundary-layer flow are summarized. An orthogonai

coordinate system (s °, n °) is selected, where s ° measures

distance along the contour of the wall and n ° is the coordinate

in the direction normal to the wall; the corresponding time-

mean velocity components are u* and v*. Here and

throughout the paper an asterisk superscript is used to denote

a dimensional quantity. The mean total enthalpy H ° is

defined in terms of u ° and the mean static temperature T" by

2
H" = C_T ° + _u" , (2.1)

where C_ is the specific heat at constant pressure and is
assumed to he constant. Dimensionless variables are defined

using a reference length Lref, a velocity U_ef, a viscosity P_ef

and a density P_ef; in addition T" and H" are made

dimensionless with respect to a reference temperature T_e f

and C_T_e f respectively 1. The dimensionless total enthaipy is

therefore given by

1This choice of dimensionless variables for the thermal

quantities varies somewhat from References 22 and 25, where

the explicit choice T_e f = U_/C_ was used; for low speed

flows, the latter choice of T_e f gives unreasonably low

temperatures. Thus there are some minor notational

differences from Reference 25 in this paper.



2 2H = T + MrefU , (2.2)

where the reference Mach number is defined by

Mi_ = Ur'f_ (2.3)
7RWre f'

7 = C_/C_ is the ratio of specific heats, and R is the gas

constant. Lastly, the pressure is made dimensionless with

respect to P_ef U_ef 2" The governing equations are then:

O(rpv) + _(rpv) = 0, (2.4)

pu0U 0u = Or (2.5)

pu H -v oH _ (2.6)_s +,,_'=an •

For a two-dimensional plane flow r = 1, while r = r(s) is the

dimensionless radius of revolution for an axisymmetric body.

In these equations, r and q are the total stress and a flux

defined by

/a cqu (2.7)r = v + Re On'

(3'-1) Mr2ef p __(u_
q = ¢ + 2Re an _ J

T ref a'-_', l j,

where _ and ¢ are the Reynolds stress and turbulent flux

given by

¢ = -pu/v t, _b= -pvlH l, (2.9)

and the Reynolds number Re and Prandtl number Pr are

defined by

Re = Pr_fUrefLr_f Pr =/_*C; (2.10)
_;ef ' k" "

Here p* and k" are the (dimensional) absolute viscosity and

thermal conductivity, respectively, and although a variable

Prandtl number is permissible in equation (2.8), Pr will

generally be assumed constant.

denote a variable evaluated at the boundary-layer edge where

the free-stream velocity Ue(s), static temperature Te(s)and
density pc(s) are known. The equation of state is taken to be

the ideal gas law which (in dimensionless form) is

Pe = PT/(TMr_ef), (2.12)

thereby relating the density and static temperature across the

boundary layer to pc(s). Lastly, the viscosity/_ is taken to be

a function of temperature alone and obtained from the
Sutberland relation

(_T__3/2 (T,. + S'_

kT.) (2.13)

where S = S'/Tre f and the constant S" has the value 199" R

for air. Here and throughout a subscript w is used to denote a

quantity evaluated at the wall.

It is possible to remove the density from most of the

terms in the governing equations (2.4) to (2.6) by introducing
the Howarth-Dorodnitsyn transformation 2_

nY = pdn, 9 = pv + _u_sY. (2.14)
0

Here Y measures a density-weighted distance from the wall. It

is easily shown that equations (2.4) to (2.8) become

_(ru)+o-_y(rv)=0, (2.15)

uSU dUe 8r (2.16)as + 90_='_'_ Ue ds + aY'

_0H 0q+ = (2.17)
as _ 0Y'

where the total stress and flux are

_(eau (2.18)r = o"+ 0Y'

+_ . 2 0 2

respectively. The boundary conditions are:

(2.19)

u =v= r_ =OatY=O; u--* Ue asY _ co, (2.20)

The pressure is independent of n across the boundary

layer and equal to the value pe(s) at the boundary-layer edge;

equation (2.5) becomes

dp, due (2.11)ds =-Pe Ue ds '

which is equivalent to the Bernoulli equation for steady

compressible flow. The subscript e is used throughout to

H = H, at Y = 0, H ---* He as Y---, co, (2.21)

or, for an adiabatic wall,

0H=0 at Y=0.
aY (2.22)

For steady flow, He is a constant and the Mach number in the

mainstream is related to He and Ue by



Ue _ c_He
(v-1)M_f' (2.23)

where a is defined by

(7-t)Me _

= 1+ ("_)MJ'_: (2.24)

The density and absolute viscosity are related to the static

temperature T through equations (2.12) and (2.13) and it is

easily shown that the temperature is related to H and u by

(2.25)

Furthermore, since the pressure does not vary, to leading

order across the boundary layer at any fixed streamwlse

location, it follows from equation (2.12) that

Pe T
P --Te" (2.26)

Therefore the density ratio in equation (2.16) may be replaced

by the right side of equation (2.25) and the compressible

problem is expressed solely in terms of the unknowns u, 0 and

H. It is noted in passing that using equation (2.21), it is

easily shown that equation (2.25) may be rewritten in the
form

= He u 2 (2.27)

Simpler subsets of these governing equations in the limit of
large Reynolds number will now be identified.

3. The Wall Layer

Consider first the wall layer and

dimensionless friction velocity Ur according to

define the

u_= _= 0_ (3.1)nM._0 •

A number of studies 23'25'_z:29 have identified the length and

velocity scales in the wall layer in the limit Re ---* co. If A s

denotes the length scale associated with the inner wall layer, it
is easily shown for incompressible flow that

A i = O(log Re/Re), u_/Ue = O(l/log Re), (3.2)

as Re ---, co. For the compressible flow of interest in this

paper, the scaled wall-layer variable is defined by

y+ Y hi #w
= A i' = u_" (3.3)

It should be noted that the appropriate scaling laws for
compressible turbulent flow have been controversial and a

number of relations have been proposed (see, for example,

References 1, 4, and 10). For the specific choice adopted here,

it is worthwhile to note that very close to the wall (from
equation (2.14)) Y __ np_ and the normal variable defined in

equation (3.3) reduces to

y+ p_u_ Re n = p_u,
~ #_ #'-T_ n', (3.4)

as n -- O; thus, equation (3.4) is the conventional definition of

the variable y+ in terms of actual physical distance from the

wall. Elsewhere in the wall layer, a density variation is

contained implicitly within the scaled normal variable through

the definiton of Y in equation (2.14).

It is well known 14'_3'27"_9 that, since the wall layer is

thin and the streamwise velocity is O(Ur) (and hence small),
the dominant terms in equation (2.5) are the viscous and

Reynolds stress terms; in the limit as Re ---* co both the

convective terms and the pressure gradient are negligible to

leading order in the wall layer. This feature of the wall layer

is discussed extensively elsewhere 14'_3,27"_9 but may easily be

checked using the scalings that will be adopted here.
Equation (2.16) reduces to

Or _ O, (3.5)by +

or using equation (2.18)

u 0 [#POu _ Oo"

f + = o. (3.6)

Integrating this equation form 0 to Y+ and using equation

(3.1) as well as the fact that _ = 0 at Y+ ---- 0, it follows that

r=u _pOu +_ p_u_,
_p--_ by+ = (3.T)

and therefore the total stress r = p_u_ across the wall layer,

to leading order. The velocity u is logarithmic for Y+ large

and as Y+ --. 0% the viscous stress term in equation (3.7)
becomes small and

---. pwu_ as Y+ _ co, (3.8)

to leading order. It should be noted that any model which is

adopted for the Reynolds stress in the outer layer must

conform to the behavior indicated by equation (3.8) in the
overlap zone.

In view of equations (3.7) and (3.8), the velocity and

Reynolds stress in the wall layer are expanded as

u = u_ U+(Y +) + .... _r = p_u_ ¢:t(Y +) + .... (3.9)

where U + and _j. are profile functions, one of which must be

specified in order to define a specific closure model, subject to
the conditions that

0U+ 1, U + = 0, ¢rt 0 at Y+
ay+ = = = O, (3.10)

and

U + ,,, _ log Y+ + Ci, ct "" 1 as Y+ --* co. (3.11)

In the above logarithmic law, i¢ is the von Karman constant

and Ci is the inner log-law constant, usually assumed to have

universal values of _ -- 0.41 and C i = 5.0. Equation (3.7)
becomes



_-_PO°+ + _ - i. (3.12)
#_P,_ 0y +

It can be shown (Appendix A) that the Sutherland relation

(2.13) is consistent with the Chapman-lZubesin law /Jp =

pwpw in the wall layer and hence equation (3.12) becomes

0U+ + _z = 1. (3.13)
Oy ÷

In view of the fact that the convective terms do not play a

role in the leading-order wall-layer equations, the dependence

of the wall-layer solution on the streamwise variable s can at

most be parametric and _t and U + are functions of Y+ alone.

In the present study, the turbulence model used for the inner

layer is the wll-layer model developed by Walker et al?s,

which is based on the coherent structure of the near-wail flow.

Through consideration of typical motions during a typical

cycle in the wall layer, an expression for the mean-profile is

produced 2a via a time-average over the representative cycle.

The result is an analytic function U+(Y +) (which also

contains an explicit dependence on the average burst period).

This functional satisfies the first of conditions (3.10) and

(3.11) and provides a formula for U + across the entire wall

layer. A summary of the function U + is given in Appendix C.

It is noted in passing that an expression for the Reynolds

stress function _1 can readily be obtained from equation

(3.13) and that direct comparison _s with measured Reynolds
stress data shows excellent correspondence with the

theoretical expression.

Now consider the thermal problem. Again it is easily

shown that the convective terms are negligible to leading

order in the wall layer; equation (2.17) reduces to

0q--q-- = 0, (3.14)
0y +

and consequently q = qt, is invariant, to leading order, across

the wall layer. It follows from equation (2.19) that

q_ = ¢ + (7_l)M_e f /_P cgu.._q._+ u,p____ppOHurUay+ Pr/_ 0y +

(3.1s)

But since u = ¢ = 0 at Y+ = O, it follows that

q_ =urp_ OH I 0' (3.16)Pr 0y + y+=

and consequently qw denotes a dimensionless heat fiux at the

wall defined by

• 0T" (3.1z)
qw = q_ q_ = kw On* n*=0'p;s,u;_c;T;j

where k_, is the dimensional thermal conductivity of the fluid

at the wail. Note that q_ denotes a heat flux from fluid to

the wall (see Appendix B).

It will subsequently be shown (in $4) that qw is

O(u,2/Ue 2) and since u is O(u,) (c.f. equations (3.9)), it is

easily shown that the second and fourth terms in equation

(3.15), namely the viscous dissipation term and a portion of

the conduction term, are negligible to leading order provided

(u,/Ue) << 1. The form of equation (3.15) then suggests the

following expansions for the turbulence term and total

enthaipy in the wail layer:

¢ = qw Cz + .... ,

H = Htu + --q-_0 +p_ur + .... ,

where ¢I and 6 + are functions of Y+.

(3.1s)

(3.19)

Upon substitution in

equation (3.15), itfollows that to leading order

_1. ____e_P0o+ + _ = 1. (3.20)
Pr _P_ 0y +

The profile function 0 + is logarithmic for large Y+ and thus as

Y+ --* oo, the first term in equation (3.20) (corresponding to

conduction) approaches zero. Therefore,

¢z -'* I as Y+ -* co, (3.21)

or equivalently

¢ ---* qtu as Y+ --* oo. (3.22)

Again, any model for the turbulent heat flux in the outer

layer must conform to the behavior indicated in equation

(3.22) in the overlap zone.

In the present study, the turbulence model used for

the inner layer is the wail-layer model developed by Walker,

Schaxnhorst and Weigand 15, which is based on the coherent

structure of the near wall flow and the transport of thermal

energy during a typical wall-layer cycle. The analysis 14'1_

produces a functional which exhibits a dependence on the

square root of the Prandtl number (as well as the mean burst

period) and

8+ = e+(Y_), Y_' = ,f_Y+. (3.23)

Expressed in terms of the variable Y_" and again using the

Chapman-B.ubesin relation (Appendix A), equation (3.20)
becomes

_p _0tt
oy+ + _x = 1. (3.24)

The functional 0+ is similarv_ in form to U + and

0+ =0, de+ =_-_, stY+=0, (3.25)
dY_

0+~ ¼ logv; + B,, as v; -. co. (3.26)

Here _s plays the role of the von Karman constant in the

velocity distribution, but _# is not constant in general and
• 14 15
depends on local flow conditions ' . Formulae for the

constant B_ and _s will be discussed subsequently. The

function #+ is described in Appendix C.
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4. The Outer Layer

In the outer layer, variations in the streamwise

direction affect the solution structure directly, and it is

convenient to define new independent variables by the

Mangler transformation

= f_ r = ds, 7/ =,%L_o , (4.1)

where Y is the Howarth-Dorodnitsyn variable defined in

equation (2.14) and Ao(_, ire) is a scale proportional to the

local boundary-layer thickness, which will be selected

subsequently. The following new dependent variables are

introduced,

(4.2)
• Ue' rAoUe I Os\--/J' He'

where _ is the normal velocity defined in equation (2.14);

alternatively, V may be expressed in terms of the original

velocity v (c.f. equations (2.4)- (2.6)) according to

if r#v + 87 1V
r2lA---'_e _ n FS" (4.3)

It can then be shown that either of equations (2.4)-(2.6) or

(2.15)-(2.17) become

_(AoUeF) q- _(AoUeV) = 0, (4.4)

F OF V OF __L -_ (I - F 2) -{- _.._1 8r (4.5)0-_ + Or] = Me AorU_ 0r]'

F_ -{- V 0I = 1 0el (4.6)Or/ AorUeHe Or/'

where Me is the local mainstream Mach number.

In the outer layer, the solutions for F and I axe in the

form of a defect law and guided by the inner expansions in

equations (3.9), (3.18) and (3.19), the outer expansions are
written in the form

u, 0F_ +...
F=I+u_e 8r] (4.7)

I=l+ q_ 81+...,
p_uTHe

(4.8)

where F 1 and 01 are functions of (Gr]) to be determined. A

stream function may be defined by

8¢ AoUeF, 8@
0--_ = _-_ =- A°UeV, (4.9)

in order to satisfy equation (4.4) identically and using

equation (4.7), it follows that ¢ has the expansion

¢ = AoU,r]+ Aou, FI( G r]) + .... (4.10)

Thus V is given by

V = (AoUe/ __.i_ _ (Aou,FI) _{." AoU----_" r] " _oU, .... (4.11)

where the prime denotes differentiation with respect to _. In

the expansions (4.?) and (4.8), the gauge functions will be
denoted by

U. = Ur qt,
U'-e' q" = p.u,H, " (4.12)

The matching with the inner layer will shortly establish that
Ao and q. are O(u.) and also that

du°

= O(u,=), u. --_ 0 as Re --* co. (4.13)

Using these results and substituting the expansions (4.7),

(4.8) and (4.11) into equations (4.5) and (4.6) yields, for an

isothermal wall and to leading order,

(a.u,), ±
0COt/" AoUe r] Or} 2 --'-- Me d_ [u, O1" 2 Orl J

+ 1 Or (4.14)
rAoUeur Or}'

8(91 (AoUe/ aO 1 1 O_..q (4.15)
0_ - AoU e- r] 0_ ----rAaUeHeq. _r]"

The boundary conditions associated with these equations are

0F1 O 1 --* 0, as _ --, co. (4.16)
0q '

and

8F1 _ _ log -F C°, 0, (4.17)Or/ 7/ asq -+

O1 _ _-]_slogq+Bo, asq "-* 0. (4.18)

The limiting behavior in equations (4.17) and (4.18) ensure
the existence of a logarithmic overlap region between the inner

and outer layers: Note that the general form of conditions

(4.17) and (4.18) applies for an attached turbulent boundary-
layer flow and is independent of any specific turbulence

closure; C-o and Bo are, in general, functions of _ (to be found)

and the actual streamwise distribution of these quantitites is

strongly influenced by the particular outer-region turbulence

model adopted. Although _ = 0.41 is constant over a wide

range of flow conditions, there is no universally agreed upon

constant value of _l, and careful comparisons 14 with measured

temperature profile data in low-speed subsonic boundary
layers show that _0 depends on local flow conditions. A

formula for _e will now be developed.

Matching of the velocity profile in the overlap zone is

carried out using the asymptotic forms in equations (3.11) and
(4.17) and leads to the matching condition

_=li°gl r_. j + c,-c°. (4.19)

For a known wall viscosity and Reynolds number, equation

(4.19) provides a relation to determine the friction velocity u_,

based on the inner-layer constant C_ and the characteristics of



theouterlayerprofilewhich enter through the outer scale Ao

and Co. It is noted in passing that the results quoted in

equations (3.2) and (4.13) are readily confirmed using

equation (4.19). Matching of the total enthalpy profile using

the asymptotic forms (3.26) and (4.18) yields

(1 - I,_)q._¼log ÷ (4.20)

where

I,_= H,_/H.. (4.21)

In the limit of large Reynolds number, the logarithmic terms

on the right side of equations (4.19) and (4.20) dominate,
and it follows that

i% _ q"

-_ (1-lw)u. as Re _ oo. (4.22)

In this paper, the value of _¢s is assumed to be defined by the

asymptotic result in equation (4.22), and combining equations

(4.19), (4.20), and (4.22), it is easily shown that

_e C_- Co- _Iog Pr

-- B(- Bo (4.23)

The thermal match condition (4.20) serves to determine the

heat-transfer parameter q. for given values of Prandtl

number, wall temperature, and ur; the characteristics of the

outer- and inner-layer profiles enter through the log-law

parameters Bo, Co and B_, C_ respectively. In practice, the

relations (4.20) - (4.23) can be utilized in one of two ways,

both of which are essentially equivalent. In the first

approach 14, me is calculated from equation (4.22) (with _ =

0.41) for a given estimate of q. and u.. and then q. is updated

using the full match condition (4.20); both quantities are then

refined through an obvious iteration. In the second approach,

which was used here, se is calculated directly from equation

(4.23) and q. is then evaluated from equation (4.22). In the

turbulence models that will be adopted in the present study

(c.fl section 5), both Bo and B i are implicit functions of _¢0

and, consequently, equation (4.23) is a nonlinear equation for

_, which is solved iteratively.

It should be noted that q. may be expressed in terms

of a Stanton number defined by

q_' = q_
St = p_U; (H_-H&) p_Ue(He-H_)' (4.24)

and it is easily shown that

St__ - q,u.
(1-I_)" (4.25)

In terms of Stanton number, equation (4.22) gives

s. = m St/u_. (4.26)

One potential disadvantage associated with the use of Stanton

number in a high speed compressible flow occurs with a

heated wall when Hw is close to H e and thus St is very large.

An alternative heat transfer parameter Is Qw, which avoids

the difficulty, may be defined by

Q_ = q_ = _ (4.27)
p_,U_H; p_UeHe"

It follows that Q_ = q.u. and equation (4.22) becomes

(1- Iw) u,2" (4.28)

Whether St or Q_, is used as the basic heat transfer parameter

is a matter of preference.

5. Turbulence Models

The turbulence models used for the outer layer are

relatively simple eddy viscosity and eddy conductivity models
similar to the Cebeci-Smith 1 or the Baldwin-Lomax 2 outer

models. However, it is important to appreciate that the latter

models were primarily developed and refined for low-speed

flows; consequently, the arbitrary extension of these models to

the prediction of high-speed compressible flows is questionable.

On the other hand, an attractive feature of algebraic models is

their relative simplicity, and it is of interest to develop such

an approach which adequately accounts for the effects of

compressibility. In general, such models are of the form

8u 8H
r = pc _-_, q = PeH _n' (5.1)

where _ and (H are the total effective viscosity and

conductivity, respectively. Throughout most of the outer

layer, r and q consist primarily of Reynolds stress and

turbulent flux. Consider first the eddy viscosity function. In

terms of the Howarth-Dorodnitsyn variable Y defined in

equation (2.14) or the scaled outer variable defined in

equation (4.1)

r = p_e 8_.uu p_er 0u
8Y = A---_-O_" (5.2)

But in the outer layer, u is in the form of a defect law (c.f.

equation (4.7)) and, according to equation (4.17) is

logarithmic for small y. It follows that

p2¢rur p2gur

r ~ Ao_-'--'-_ = -_Y--' as _ --" 0. (5.3)

But from equation (3.7)

r ~ p,ur _, as Y+ --* co, (5.4)

and it follows that in order to provide a smooth transition

between the inner and outer layer, the eddy viscosity function

must have the following form for small r/

p. p_# uTAo
-- -_ u,_Y =-_-'y--_'I, as . --+ O.

P P
(5.5)

The linear form in Y contained in equation (5.5) is a necessary

feature of all proper outer-region models and is necessary to

produce the logarithmic behavior in the mean profile. The

important aspect of equation (5.5) is the functional

dependence on the density. For larger values of Y, the linear

dependence on Y must be modified and simple far-fieldeddy



viscosityformulae,forlow-speedcompressible flow, are

eo = KU,6", (5.6)

for the Cebeci-Smith model I and

eO = Cp K Ymax Fmax. (5.7)

for the Baldwin-Lomax model _. In these formulae, K is a

constant which normally has the value K ---- 0.0168, and 6" is

the incompressible displacement thickness defined by

For the Baldwin-Lomax model, Ymax is the physical location

where the function F = y[0u/0y[ achieves a maximum and

_'max is the corresponding value of F; Cp is a constant (having

a value of about 1.6) which has been adjusted= so that the

model produced essentially similar results to the Cebeci-Smith

model at low Mach numbers. The linear variation of the eddy

viscosity for small r/ is normally joined to either of (5.6) or

(5.7) as a simple ramp function, with the juncture being

determined by the location where the two formulae give the

same value.

For compressible flow, a corresponding simple

formulation is desired. Two requirements for such a model

are that it behave according to equation (5.5) for small W and

also that the far-field portion of the model should reduce to

either equation (5.6) or (5.7) for low Mach numbers.

Unfortunately, there is a wide variety of functional forms that

would fulfill both of these requirements, A number of

formulae were tested in this study by producing profiles which

could be compared directly with experimental data. One

additional consideration relative to model selection was that

the adopted form should represent the situation well over a

range of Mach numbers without introducing additional

empiricism. Here the modification of the Cebeci-Smith-type

model will be given and an equivalent form for the Baidwin-

Lomax model (which gives essentially equivalent results) can

be readily inferred. The compressible eddy viscosity formula

for the outer layer used in this study is

P=Pe
= -7 u.r _(,i), (5.9)

where

_(_) = f_K, _ > v=' (5.10)
_/_i, _ < 'I,_,

L

where

(3.22), (4.18) and (5.1) that the eddy conductivity function CH

must have the following form for small r/

P_ pw
_. ~ _ u,_,v = _ r _,,, as . - o. (5.12)

For larger values of r/, the linear dependence on r/ must be

modified and a simple far-fieldeddy conductivity formula for

low speed subsonic compressible flow is*4'Is

eHo = K h Ue 6". (5.13)

Extensive comparisons 14 with experimental data for the

temperature profile have shown that for constant pressure

flow at subsonic speeds K h = 0.0245. Again, a generalization

to high-speed compressible flow is sought which conforms to

the condition (5.12) and reduces to equation (5.13) in the

outer part of the boundary layer for low Mach numbers. The

eddy-conductivity formula used in the present study is

consistent with the form of equation (5.9) and is

P=Pe

_H= -7 ue 6" _H(_), (5.14)

where

K h, y > _m,_H = _,"/_Z, _ < _', (5.15)

where r/1 is defined by equation (5.11) and

K h = 0.0245, _m = KhYl/_,. (5.16)

Upon substituting equations (5.1), (5.9), and (5.14)

into (4.14) and (4.15), it is easily shown that

÷
0=F
Z_X.I

= (_)0_0_' (5.17)

where the coefficientsin these equations are given by

r(AoUe/

a(_) = _-TZW_" (5.19)

r(A_Ue)r,_ _, K = 0.01_8. (_.11) _(_) = , (5.20)rll = AoUr ' , p_urt/l

The form of e in equation (5.9) was adopted partially for

convenience; the factor of p-=, mandated by the matching to

the wall layer, is carried through the outer layer in order that
patch point _/m between the two pieces of the ramp function

in equation (5.10) is a function of streamwise distance alone

and not t/.

Following similar arguments to those used for the

eddy-viscosity function, it is easily shown using equation

The turbulence models for the wall layer are the

emb.edded functions which are described in Appendix C. It

may be inferred that the p_:ofilemodel U + in equation (C.1)

contains the following parameters: (a) the von Karman



constant 6, (b) the inner "log-law"constant Cj., (c) the burst

period T_, and (d) the parameter t_'. These parameters are

not independent however and, given any two, the other two

parameters may be computed from equations (C.9) and

(C.10). For example, for commonly used values of _ = 0.41

and C_ ----5.0, the solution of equation (C.9) and (C.10) gives

T_ ---- 110.2, t_"= 0.00801. (5.22)

Other values of _ and/or T+o may be used to produce a

different value of Ci. In general, T_ will be large with respect

to t + and an expansion of equations (C.9) and (C.10) for
small (t+/T_) yields

C, _ _(_rT_)Z/_ % 1{1-{--_-11og(4T_)}-b..., (5.23)

to leading order. This gives Ci as an explicit function of

and T_; the value of Ci may be refined (if desired) by solving

equations (C.9) and (C.10) exactly (for given values of _ and

T_). For the total enthalpy, the corresponding estimate of B i
is

which also may be refined using equations (0.9) and (C.10).

6. Self-similar Solutions

In this section, a set of self-similarouter layer profiles

will be developed using the new outer-region turbulence

models given by equations (5.9) and (5.14). These outer-layer

functions will subsequently be combined with inner wall-layer

profiles to form composite profiles for velocity and total

enthalpy across the entire boundary layer. A direct

comparison will then be made with measured experimental

data in order to validate the turbulence models, as well as the

general approach. A large portion of measured profile data in

supersonic boundary layers have been taken in constant

pressure conditions and, for simplicity, only this situation will

be addressed here; solutions for flows with pressure gradlcnt

will be considered elsewhere. Solutions of equations (5.17)

and (5.18) for which

z_ = F,(_), o_ = e_(,_), (6.1)

and Me is constant (b = "0) are now sought. It follows from

equation (5.17) that _ must be a function of _ alone which,

from equations (5.10) and (5.11), requires that _/I be

independent of _; a second requirement is that a(_) is

constant. The first requirement may be satisfied by selecting

the outer scale Ao according to

-- rpeUeS'.
Ao -- "-'-aT---,, (6.2)

from equation (4.22). Under these circumstances, equations

(5.17) and (5.18) reduce to

=o, (6.4)
dr}t dr}_ j Jr ar} dr}2

0,
dr}_,H dr} J % = (6.5)

where _ and _H are given by equations (5.10) and (5.15) but

with 01 = 1. The solution of equation (6.4) which satisfies

conditions (4.16) and (4.17) isgiven by

I V"W- -Ka/_I¢_

-._ _e erfcI_K_ t r}> r}_,

dFldrl---- . ,_ . .," ' (6.6)

- + log r}_<

where Co is the outer region log-law constant (c.f. equation

(4.17)) given by

(6.7)

In equations (6.6) and (6.7) erfc and g I denote the

complementary error function and exponential integral,

respectively and 7o = 0.577215 ...is Euler's constant. The

solution for the total enthalpy function e I is also given by

equation (6.6) but with K and s replacedby Kl_ and xs

respectively; in addition Bo, the outer region log-law constant

for total enthalpy (c.f. equation (4.18)), replaces Co. The

constant B¢ is also given by equation (6.7) but with K ---- K h

and _ = _%.

7. Comparison with Experimental Data

In this section, the method of constructing composite

profiles for total enthalpy and velocity will be described.

Assume that at a given streamwise location along the surface,

the following data are known: (a) the mainstream velocity

U_, temperature T_ and density p_, (b) the wall temperature

T_,, and (c) the incompressible displacement thickness 5".

Note that a value for 5 *° may easily be obtained from quoted

experimental measurements of u/Ue in the boundary layer

through numerical integration; it is related to the

dimensionless thickness defined in equation (5.8) and used in

the definitions (5.9), (5.14) and (6.2) by 5-- = L_efS'. The

specification of 5"" at a given streamwise location in effect

defines a local length scale.

A Reynolds number based on the incompressible

displacement thickness may now be defined by

consequently, the two conditions are

_i = 1, a(_) =a, (6.3)

where a is constant. For similarity in the total enthalpy

equation, the additional requirements are, from equation

(5.16), that 6, must be constant as well as (q./u.)/(l- I.)

= _ = n,. eeV,_"Re_. --- p,, , (7.I)

and the match condition (4.19), using equation (6.2), becomes

: _ log {Re,,.} -b C,-Co. (7.2)
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Furthermore, the definition of displacement thickness equation

(5.8) gives

1- dr/ = u. , (7.3)
0

where the integral in equation (7.3) is across the entire

boundary layer. It is easily shown, by integration of equation

(6.4), that the constant a in equations is given by

Floo, (7.4)

where Fie o is the limiting value of Fl(r/) as r/ _ co. The

value of a must be selected so that condition (7.3) is satisfied.

It follows from equations (2.25) and (2.26) that

p m (7.5)

where I and F are defined by equations (4.2). Therefore, the

solution of equations (6.4) and (6.5) is coupled and an

iterative solution for a is required in order to ensure that

equation (7.3) is satisfied.

In practice, the iteration was carried out as follows.

An initial guess was made for a and then 8F1/0r/ and Co were

evaluated from equations (6.6) and (6.7). The inner variable
Y+ is related to 7/ by

Y+ = Repr/, (7.6)

and with u. determined from equation (7.2), a composite

profile for the velocity across the boundary layer is given by

Fcomp = 1 + u.X, (7.7)

(7.8)

where

dF1 + U+(Y+) - _(log Y+ + C,).
X = dr/

Now for the same value of a, an estimate of _# was made and

e 1 and Bo were obtained from equations (6.6) and (6.7).

With B i and C_ computed from the complete formulae in

Appendix C with T_ ---- 110.2 (or alternatively from the

estimates (5.23) and (5.24)), k s was evaluated from equation

(4.23). Since Bo and B i are functions of _:0, an iteration was

carried out to determine a converged value of ms which was

then used to find the heat-transfer parameter q° from

equation (4.22). A composite profile for total enthalpy was

then constructed according to

Icomp = 1 + q*(el(Y) + 0+ - _-lj0log (Y+_r) - BI). (7.9)

Condition (7.3) becomes

I: P-_'eJcomp X dr/=-I, (7.10)

where the first term in the integral was evaluated from:

equation (7.5) using the composite expansions (7.7) and (7.9)

while the second term is given by equation (7.8). A

trapezoidal rule on a nonuniform grid that expanded with

distance from the wall was used to carry out the numerical

integration; typically, 150 to 300 mesh points were found to

give good accuracy. For a given value of a, the condition

(7.10) will not, in general, be satisfied,and the value of a was

then refined using an iterative procedure based on the secant

method.

Direct comparisons were carried Out with several sets

of experimental data, and the theoretical profiles will be

compared with nine representative profiles listed in Table 1.

The first six profiles were taken from the data compiled in

Reference 30 and here the same identification scheme is used;

the firstfour digits identify an experiment while the last four

designate a specific profile. Generally, profiles nearest the end

of the test section were selected, since these were expected to

be closest to self-similar conditions. In all cases, the velocity

distribution was measured across the boundary layer, but

tabulated temperature data were generally inferred from some

version of the Crocco integral3°. In Table 1, Tr represents

the recovery temperature and T_/Tr = i denotes an

adiabatic wall. The present theory does not account for the

influence of viscous dissipation; when qw = 0, H ----H e to

leading order across the entire boundary layer (c.f.equations

(3.19) and (4.8)). However, H_ < H e in all adiabatic-wall

experiments and the difference (He - H_) increases with

increasing Me. In order to represent these cases here, the

value of the wall temperature quoted in the experimental

data 3° was used; this results in an analytical profile for total

enthalpy with a very small value of q, (c.f. Table 2). The

case with T_/Tr <_ 1 is a cold wall, while a value greater than

1 corresponds to a hot wall. The last three cases are taken

from the recent data of Reference 17 where total temperature

was measured directly.

Case No. M e Re6" Tw/Tr

53011302 4.545 4241 1

53010401 2.54 2635 1

53010601 2.58 11607 1

74021805 4.50 17190 1

72040601 6.50 8436 0.5

73050504 10.31 42214 1.63

_1048 2.16 6451 1.0

51548 2.17 5140 1.5

_2048 2.14 4832 2.0

Table i. Parameters associated with the experimental data.

Case No. u° u. q°

(Experimental) (Theoretical) (Theoretical)

53011302 0.0544 0.0496 0.0048

53010401 0.0510 0.0478 0.0033

53010601 0.0426 0.0402 0.0027

74021805 0.0447 0.0415 0.0048

72040601 0.0464 0.0464 0.0300

73050504 0.0627 0.0453 -0.0252

_1048 0.0431 0.0421 0.0020

f1548 0.0451 0.0445 - 0.0209

_2048 0.0481 0.0459 -0.0468

Table 2. Computed skin friction and heat transfer.
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The comparisons with data for velocity are shown in

Figure 1 where it may be noted that the agreement with the

data is quite reasonable. It is worthwhile to note that closer

correspondence with the data on a given profile can be

achieved by adjusting the parameters in the turbulence models

in equations (5.8) and (5.13), such as K and K h. However,

the objective here is to demonstrate that there is a degree of

universality over a range of Mach numbers using the present

models, and so no attempt to "fit" the data was made; the

profiles were produced solely from the known physical

quantities at each data station, as well as 6°*, and do

represent the data reasonably well. At the same time, since

true self-similarity will rarely be achieved in an experiment, a

very close correspondence between the data and the

theoretical profiles should not be expected. The total

enthalpy profiles are given in Figure 2 where good

comparisons may again be seen, even for the heated wall (case

7305) and the cooled wall (case 7204). Finally, the

distributions of static temperature are shown in Figure 3

where again good agreement may be observed.

The calculated values of the skin friction parameter u.

are given in Table 2 and may be compared with the quoted

experimental values. The experimental values of skin friction

have been obtained by a variety of methods s° (some of which

are indirect) and generally involve errors of unknown

magnitude. The theoretical estimates are reasonably close to

the experimental values (except for the hypersonic case), with

better correspondence occurring with the most recent

measuurements. The heat transfer parameter q. is also listed

in Table 2 which, as anticipated, is very small and at least an

order of magnitude smaller than u. for the adiabatic cases; for

flows with heat transfer, u. and q. are of comparable

magnitude.
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8. Conclusions

In the present study, the new compressible turbulence

models have been validated, and the embedded-function

approach has been shown to be viable in the supersonic flow

regime. In addition, a model for heat transfer in a high-speed

compressible flow has been developed. One further byproduct

of the present study is a set of composite velocity and total

enthalpy profiles which gives a good representation across the

entire boundary layer. These profiles could be used to define

an initial distribution of the flow quantities to initiate a

Navier-Stokes solution in a more general flow environment,

simply by estimating displacement thickness distributions

along all walls.
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Appendix A

In this appendix, it is demonstrated that use of the

Chapman-Rubesin law pp = pw/_ is consistent with the

Sutherland relation (equation (2.131) in the turbulent wall

layer. At any streamwise location in the boundary layer, p is
independent of n to leading order, and it follows that

p,u Twp (._T__I/2 (Tw + S)
p,_,u'---'_= _ = \Tu,) (T + S) ' (A.1)

for any fixed streamwise location s. But T/Tw is given by

equation (2.27) in general, and using equations (3.9), (3.19/,
(4.12 / and (4.22/, it follows that

p_ - 1 + o(n.). (A.2)

Appendix B

In this appendix, the physical significance of each of
the terms in equation (3.151 will be described. Let £" denote
a total energy loss, occurring within a control volume of unit
length in the streamwise and spanwise directions and between
the wall and a height n'. Define £" by

2." = dn*. (8.1 /

However, if n* is a location within the wall layer, r* is

constant and thus £" = u*r'. A dimensionless total energy

loss is defined by Z = ].'/(p_efUrefC_T;ef), and using
equation (2.7) , it follows that within the wall layer

(B.21

The quantity Z is positive and consists of two parts; the first

term in equation (B.2) is associated with viscous dissipation
into heat energy and corresponds to the second term in

equation (3.15)_ The second term in equation (B.2) is
associated with the production of turbulent kinetic energy.
Define a dimensionless total flux due to molecular conduction

(with respect to p;efU;_fC;L;ef) at height Y+, toward the
wall, by

1_.£ T__._ (B.31
qcond = PrP_0y +'

which in view of equation (2.2) is equivalent to the last two

terms on the right side of equation (3.15). Finally, define a

total turbulent heat flux, toward the wall, by /
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qturb = PvIT!" (B.4)

But in the present dimensionless variables

pvtT ' = _b- (7-1)M_efUCr , (B.5)

and it follows that equation (3.15) is an energy balance which

reads

qw = qturb Jr 2. Jr qcond" (B._)

Thus, the total energy conducted to the wall is balanced by

the sum of the fluxes into the control volume at height Y+

and the total energy loss within. For a hot wall q_ < 0 and

for a cold wall q_ > 0.

Appendix C

In this appendix, the embedded functions for the wall-

layer profiles of velocity and total enthalpy are
. 15_23

summarized ; these profiles are analytical functions and a
set of FORTRAN subroutines for their evaluation is available

from the authors upon request. Both wall-layer profile models
are of the form

( }to + +u +, 0* = 1 + R(Ws,t0) Q (?+) + z(?*)

}to +

- R(O,to)q (?*)+ z(?+) . (c.1)

Here t_" is a parameter (to be determined) and T_ is the mean

period between bursts in the wall layer having a typical

valuJ a of T_= 110.2. The functions in equation (C.1) axe
given by:

a(t,q)= A0 + _ log(t+ t:), (c.2)

2

Q(Y) = (2y 2 Jr 1)efty Jr _ ye "y , (c.3)

Z(y)= (2y + I)s (y)+ y _. '(y)

._ (6y2+1)e y{ye-Y'}.

Here a_ and A 0 axe constants whose values axe given by

(C.4)

a0 = 3, Ao = C,- lJ'70.x[2log 2}, (C.5)

for the velocity profile U +, where C I is the inner region log-law

constant (c.f. equation 3.11), x is the yon Kaxman constant

and 70 is Euler's constant. For the total enthalpy profile 8 +,

replace i¢ with _0 and C i with B I in equation (C.5). For the

velocity profile U +, the normal Variables appeaxing in equation
(C.1) are

9+ = "_" ?t = 2_*' (C.6)

while for the enthalpy profile 8+, Y+ is replaced with Y_" in

equation (C.6) (c.f. equation (3.23)). Finally, the function E
is defined by

"-(Y)----I: e-z2 I: e'2 I_ e'x2 d,dxdz. (C.7)

A list of the properties of this function is given in Reference
31 and, in particular, it may be shown that

(c.s)

At the wall, the profile U + and 8 + satisfy the first of

equations (3.10) and (3.25); in addition, both profiles must

satisfy the wall compatibility conditions _3 which are that the

second and third profile derivatives must vanish at Y+ = 0.

For the velocity profile U +, these conditions require u3 that

{}
(c.9)

(T$ Jr t_) -1/= K(T$. t_')- (t_)"I/2 K(0,t_) = 0. (C.10)

For the total enthalpy profile, _t replaces _ in equations

(C.9), (C.10) and (C.5) and B i replaces C i in equation (C.5);

in addition, the right side of equation (C.9) is multiplied by
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